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Abstract 
The paper studies combinations of mechanisms through which firms connect to basic 
research, and how they affect various dimensions of firm’s innovative performance:  
quality, cumulativeness and speed. We examine the case of IMEC, a world leading 
research institute in the area of nano-technology, with a mission to bridge the gap 
between fundamental research at universities and R&D in the industry.  We 
investigate the impact for firms of joining a partnership program with IMEC as well 
as the use of inventors who have “visited “ IMEC. We find strong evidence that 
linking to IMEC has provided partner firms with more valuable technology outcomes 
that are appropriated better by these partner firms. Boundary crossing inventors 
increase the chance of developing high quality technologies. The data strongly 
suggest complementarity between institutional and inventor links particularly for 
better internal appropriation.  Poaching firms without an organizational link to IMEC 
are less successful in using such boundary crossing inventors.   
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1. Introduction 

An important and recurrent concern in economics and management has been to 

understand to what extent basic research influences technological progress and 

ultimate economic growth. More recent evidence suggests that industrial firms are 

intensifying their links to basic research performed by universities and other research 

organizations (Cassiman, Veugelers and Van Looy, INNOS&T). In spite of these 

growing connections our understanding at the micro-level of the variety and 

distribution of these links and how they affect industrial innovation remains unclear. 

In this paper we examine the links to a  research organization, performing 

basic research and how such links affect firms’ applied research productivity. We 

contribute to the literature in several ways. First, we move the analysis to a more 

disaggregate level.   Firms that actively link with basic research will have a portfolio 

of innovative projects. It is important to examine the effect of the links on the projects 

exploiting such links and compare them to similar projects of firms without such links.  

Second, we examine the effect of various mechanisms to link across the firm 

boundary to basic research.   Next to the decision of joining a cooperative program, 

we also look at the importance of boundary crossing inventors.  Third, we examine 

several potential ways these firms might capture returns to these links to basic 

research: the value and quality of technologies developed, the cumulativeness of their 

research, or, the establishment of technology lead time.  

The links to basic research that we examine focus on the links through IMEC, 

a world class research organization performing basic research in micro-electronics 

and semiconductors. IMEC has the expressed objective to bridge the gap between 

fundamental research done at universities and applied R&D in the industry. By 

financially contributing, firms can become an IMEC partner, i.e. buy “ a seat at the 
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table”. As a result, they gain access to IMEC developed proprietary basic  

technologies. In addition, IMEC runs an industrial affiliates program where partner 

firms can sign up to specific research programs in their area of interest. By sending 

researchers to participate in the basic research program at IMEC where they interact 

with researchers of IMEC and other partners involved in the program, partners can 

acquire “ a spot in the lab”.1 IMEC negotiates an elaborate IP agreement with its 

partners.  This allows us to track through patent information the effects of affiliation 

to IMEC as well as the actual mobility of people and ideas.  

The analysis involves comparing patents with different treatments of links to 

basic research at the research organization. Patents of firms that are IMEC partners 

are compared to patents of non-partnering firms. This allows us to trace the effect of 

affiliation to the research organization. In addition, we compare patents of boundary 

crossing inventors that have been participating in basic research programs at the 

research organization versus patents of inventors who did not participate in such a 

program. As a result we can trace the effect of cross-institutional mobility of 

researchers.  We do this for both partnering and non-partnering firms to examine any 

differential effect from using an inventor link between partners and non-partners, as 

the latter can also poach inventors who have visited IMEC to attempt to obtain access 

to the basic research. 

We find that firms linked to basic research through an IMEC partnership and 

who use boundary crossing inventors are more likely to develop higher quality 

innovations. Partners continue to build internally on these technologies, improving 

appropriation of returns in this fast paced environment. Interestingly, inventor 

mobility is an important link, but only when used in combination with affiliation to 

                                                
1 We thank Rosemary Ziedonis for suggesting the use of this language. 
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IMEC.  Poaching firms without an organizational link to IMEC are less successful in 

using such boundary crossing inventors.  This complementarity holds particularly for 

the quality of inventions and for building cumulativeness. 

In the following section we discuss the related literature. Section 3 develops 

our hypotheses, while Section 4 discusses the empirical setting of IMEC. Section 5 

elaborates on our data development and methods. Section 6 presents our results, while 

Section 7 concludes with some caveats and directions for further research. 

 

2. Literature Review 

The interrelation between basic research and firm-level innovation outcomes is 

covered in a diverse literature in Economics and Management.  While the economics 

literature mainly explores the effects of basic research on innovative performance, 

they provide little explanation about the processes through which basic research 

affects innovation.  The management literature has tried to open the black box inside 

organizations on how basic research links effectively translate into improved 

innovative performance.  

 

Any explanation of why firms engage with basic research organizations needs 

to argue that ultimately basic research enhances firms’ innovative performance. 

Several explanations as to the exact mechanisms for enhancing applied research 

productivity have been suggested (Nelson; 1959; Evenson and Kislev, 1976; 

Cassiman, Perez-Castrillo and Veugelers, 2002).  As basic research know-how 

provides a codified form of problem-solving, it can increase the efficiency of private 

applied research (Arrow, 1962). In addition, basic research know-how serves as a map 

for technological landscapes guiding applied research in the direction of most 
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promising technological venues avoiding thereby wasteful experimentation (Fleming 

and Sorenson, 2004). A better and more fundamental understanding of the technology 

landscape encourages non-local search for improving technologies as opposed to local 

search, leading to more diverse research projects being explored. In addition, more 

basic knowledge can simultaneously fertilize different research projects (Cockburn 

and Henderson, 1998).  

Probably the most discussed argument of how actively engaging in basic 

research might increase applied research productivity is the fact that basic knowledge 

leads to a better identification, absorption and integration of external (public) 

knowledge (Cohen and Levinthal, 1989; Gambardella, 1995; Cassiman and Veugelers, 

2006). Faster identification, absorption and integration of external knowledge in turn 

leads to increased productivity of the applied research process, resulting faster into 

new technologies (Fabrizio, 2009; Cassiman et al., 2008).   

At the same time,  firms with basic research capabilities can be expected to 

generate “ unexpected”  outcomes, which in turn improves the productivity of applied 

R&D and as a consequence the productivity of the innovation process (Sobrero and 

Roberts, 2001; Cassiman and Valentini, 2009; Aghion et al., 2009).   

Finally, rather than affecting the output of the innovation process, Stern (2004) 

argues that basic research links might affect the inputs of the innovation process. By 

setting up a research friendly environment, the firm attracts researchers willing to 

accept a lower salary in return for the freedom to do basic research and publish their 

results. These researchers are twofold valued: they do not only imply important labor 

costs reductions for the firm, but also they constitute the “ bridge”  with the scientific 

or academic world.   
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At the same time advances in basic research and technological advances are 

driven by different selection logics. Criteria for judging a new scientific contribution 

differ from the criteria for evaluating a new technology. For this reason science and 

technology are typically developed in different institutional environments, 

complicating the development of basic research in-house (Gittelman and Kogut, 

2003). Therefore, crossing organizational boundaries seems an important requirement 

to access basic research knowledge with an important scientific content. Inventors 

with a more scientific profile are probably the most efficient bridge between these two 

environments. However, little empirical work has explicitly examined who these 

boundary spanning inventors are and how they can effectively bridge scientific and 

technology communities (Allen, 1977, Tushman & Scanlon 1981, Breschi and 

Catalini, 2010). 

 

Mostly focused at the firm-level of analysis, the empirical literature has taken 

a stab at assessing the impact of basic research links on firm performance.  In spite of 

the many paybacks to be anticipated, the adoption of basic research remains limited to 

a restricted set of firms.  Most empirical evidence shows that adoption of basic 

research is indeed not costless. It is highly conditional on absorptive capacity (Cohen 

and Levinthal, 1989; Kamien and Zang, 2000) and the adoption of new organizational 

practices (Gambardella, 1995; Cockburn et al, 1999).  

Probably the largest group of empirical papers have estimated a patent 

production function at the firm-level examining the effect of partnerships with 

universities or other research organizations on firm performance (e.g. Audretsch and 

Stephan, 1996; Zucker et al 1998; Cockburn and Henderson, 1998; Brandstetter and 

Sakakibara, 1998). The pre-eminence of cooperation with other entities as  
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mechanism to access basic research is reminiscent of the importance of crossing 

institutional boundaries for effective knowledge transfers (Kogut and Zander, 1992; 

Rosenkopf and Nerkar, 2001). This holds in particular for more science based 

technologies (Gittleman and Kogut, 2003). The empirical evidence from these studies 

support the complementarity between cooperation with these research organizations 

and internal R&D , and find a positive effect from cooperation with universities and 

public research organizations on innovation productivity and sales for firms with own 

R&D capacity (Belderbos et al, 2004; Belderbos et al, 2006).  

The work by Cockburn and Henderson (1998) has shown that, beyond 

partnerships with research institutes, also direct involvement into basic research 

matters. Using data on co-authorship of papers for a sample of pharmaceutical firms, 

they show that firms connected to basic research through co-publications show a 

higher performance in drug discovery.  Also Cassiman, Veugelers and Zuniga (2008) 

find that firms with scientific (co-)publications generate more important “ applied”  

patents.  Ties with academic star scientists, either through co-publications or board 

positions, are especially in biotech, found to lead to more technology (Henderson and 

Cockburn, 1996; Zucker et al, 2002; Cockburn and Henderson, 1998); more 

“ important”  patents: i.e. international patents (Henderson and Cockburn, 1994); and a 

higher average of quality adjusted patenting (Zucker and Darby, 2001; Zucker et al, 

2002).   

 

At the invention (i.e. patent) level, mainly the effect of the citation of scientific 

literature or the involvement of an academic researcher has been examined as a link to 

basic research. The involvement of an academic inventor in the invention team is 

found to lead to more valuable patents (Czarnitzki et al., 2008).   Patents with 
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references to science are found to cover more important applied technologies 

(Cassiman, Veugelers and Zuniga, 2008), and to generate more economic value for 

pharmaceutical and chemical patents, but not in other technical fields (Harhoff et al., 

2003). Fleming and Sorenson (2004) show that having a “ scientific”  reference matters 

for the technological impact of patents but that the benefits of using such links depend 

upon the difficulty of the inventive problem being addressed: links only appear as 

beneficial when researchers work with highly interdependent knowledge pieces which 

make the probability of discovery more uncertain and non-local search is more likely 

to lead to success.   

 

At the inventor level, those inventors co-publishing with universities are found 

to generate patents that exploit more prominently (citations to) science, confirming 

their boundary spanning role.   These inventors also produce patents with shorter lags 

between existing inventions and new firm inventions in the pharmaceutical industry 

(Fabrizio, 2004).   More mobile researchers are found to have better access to 

resources and networks (Cañibano, Otamendi and Andujar, 2008) and consequently 

have a higher innovative performance (Hoisl, 2007; Palomeras, 2010).  Reminiscent 

of the importance of mobility of researchers as mechanism to transfer information 

across organizations, improved performance is also found for the firms hosting mobile 

researchers (Song, Almeida and Wu, 2003; Rosenkopf and Almeida, 2003; Singh, 

2008), and even for the sender firm (Corredoira and Rosenkopf, 2010; Oettl and 

Agrawal, 2008).  As a result, mobility across firm boundaries relates to more effective 

transfer of knowledge. 
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3. The effects of Linking to basic research:  our Predictions 

While the existing firm level empirical analyses typically find a positive relation 

between basic research activities of the firm and innovation outcomes, these analyses 

pay little attention to the actual micro-level mechanisms that link basic research 

activity to innovation performance. At the same time the invention and inventor level 

analyses do not clearly specify the interactions with nor control for organization level 

connections of the firms.  They limit themselves to inventor networks without 

superimposing organizational structures that will affect the incentives of these 

inventors to develop, communicate and appropriate returns to these basic research 

activities.  

 

In what follows we investigate in more detail which links matter and how. How can 

firms take more advantage of basic research in their applied research? How should 

they organize to take advantage of basic research? Where do we expect these efforts 

to surface? We do this for a particular case where we can carefully specify these links 

and their impact.  Our analyses are probably most closely related to Ziedonis & 

Ziedonis (2005) who examine the specific case of SEMATECH. Given the particular 

features of our research setting we are able to delve deeper into these links and their 

effects as we discuss below. 

 

3.1. On mechanisms to link to basic research 

Based on the literature, we hypothesize that on mechanisms to link to basic research, 

the spanning of organizational boundaries seems more effective to access basic 

knowledge advances and translate this into technological advances. Through the 

crossing of organizational boundaries of the right people the frictions in this 
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knowledge transfer process can be minimized. Especially, because of the tacitness and 

complexity of know-how underlying leading edge research, researcher involvement 

and mobility should play a pivotal role.  We therefore expect links involving 

boundary crossing inventors to be more effective.  We will distinguish between these 

pure boundary crossing inventor links relative to more structured organization level 

partner links, in casu cooperative arrangements.  We will also examine the interaction 

between firm and inventor level boundary spanning mechanisms, looking for any 

possible complementarity between both types of links. 

 

3.2. On effects from links 

Interactions between basic research and industry should stimulate the average quality 

of the applied technologies developed by interacting firms. They also are expected to 

lead to a higher probability of generating breakthroughs.  In addition, we would 

expect firms to take advantage of knowledge flows that have been generated through 

linking across organizational boundaries by building on these knowledge flows 

through the internal development of new technologies  This is particularly important 

for technologies that are based on basic research, as commercially viable technologies 

and products need to be developed based on these initial technologies. Not only does 

the link to basic research allow the firms to develop better technologies, as argued, it 

also allows these firms to move faster in technology space and stake out important 

technologies that they might build on.   

 

As a consequence, effects from boundary spanning firm level mechanisms and 

boundary crossing inventors should be reflected in the value and quality of the 

developed technologies generating high potential inventions.  At the same time, they 
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affect the cumulativeness of their research efforts, and, the speed at which these 

organizations move in technology space. 

 

4. Research Setting: nano-electronics and IMEC  

In this analysis we focus on the micro-electronics industry and analyze the effect of 

links with IMEC – the Interuniversity Microelectronics Center – a world class 

research institute with a mission to be a bridge between fundamental research at 

universities and R&D at industry.  

 

4.1. Links to research in the micro-electronics industry 

The micro-electronics industry is an interesting environment for testing effects of 

links with basic research. First, academic research is often at the forefront of 

breakthroughs in nano-electronics, and for this reason companies are seeking to 

cooperate with universities and research institutes to tap into emerging research 

opportunities as soon as possible. Academics are at the forefront of discoveries within 

their field, but the challenge remains to bridge the large gap between the application-

oriented needs of the industry and the results from scientific research performed at 

universities and research institutes.  

Second, the semiconductor business is a knowledge-intensive industry 

whereby leading-edge technological knowledge is mostly tacit in nature. Knowledge 

sharing via researcher interaction and mobility between firms and research 

organizations is shown to be the crucial mechanism to bridge this gap (Meyer-

Krahmer and Schmoch, 1998).  Knowledge creation in the semiconductor business is 

furthermore characterized by cumulativeness (Hall and Ziedonis, 2001).  At the same 

time, time-to-market has increasingly become a major differentiator as a result of 
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fierce competitive dynamics and the shortening of product-life-cycles.  In addition, 

patenting is a standard practice in this industry (Hall and Ziedonis, 2001) and as a 

result, patents provide a clear window on the technology and innovation activity in the 

industry.  

 

4.2. IMEC as industry-science link  

We conduct our study based on IMEC, a world-leading independent research institute 

in the area of nano-electronics and nano-technology. In 1982, IMEC was founded by 

the Flemish government. Its mission was to bridge the gap between fundamental 

research at universities and R&D in the industry. The centre was built on the 

academic reputation and prominence of the ESAT laboratory of the university of 

Leuven. The centre’s involvement in the scientific community is nicely illustrated by 

the close collaboration with world-class universities, by the numerous conference 

participations and publications by its researchers and by the presence of several 

doctoral researchers at its laboratories.2   

At the same time, IMEC is closely linked with industry. The board of directors 

includes delegates of the industry who stipulate the centre’s strategic roadmap 

focused on pre-competitive application-oriented technologies three to ten years ahead 

of industrial needs. IMEC was able to attract top industry leaders such as Intel, 

Samsung, Texas Instruments, Micron, NXP, Hynix, Elpida, Infineon, Panasonic, 

TSMC, Sony, Qualcomm and ST Microelectronics as partners. With IBM in Albany, 

IMEC in Leuven has become one of the two most flourishing centers for nano-

electronic research. IMEC possesses a unique pool of competences in a diversity of 

                                                
2 In 2010, IMEC was collaborating with approximately 200 universities worldwide in its core CMOS 
(Complementary Metal Oxide Semiconductor) division only and hosted 194 visiting PhD students at its 
research facilities. IMEC’ s own researchers, around 1000, published more than 1,750 scientific articles 
in 2009. 
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technological fields. It possesses a rare combination of know how in chip design, 

packaging and production.  

IMEC has developed a  unique business model which  stimulates the 

interactions  of researchers in order to facilitate cross-fertilization of ideas among all 

participating scientific and industrial researchers.  To this end, it runs an Industrial 

Affiliation Program (IIAP). 

 

4.3. IMEC Industrial Affiliation Program (IIAP)  

IMEC’ s Industrial Affiliation Program (IIAP) is designed to create an innovation 

model in which participating companies share costs, risks, human resources and 

intellectual property while engaging in collaborative R&D on generic technologies. 

Guest researchers, including academic and industrial researchers affiliated to one of 

its partners, are conducting research at the IMEC laboratories in close collaboration 

with other researchers. Besides IMEC’ s own research personnel (about 1000), more 

than 520 guest researchers with 60 different nationalities were conducting research at 

IMEC’ s laboratories in 2010, including 344 industrial researchers. Each partner firm 

can send researchers to collaborate in the programs in which the firm participates. 

Around 15 different industrial affiliation programs were running in 2010, of 

which a large majority in the Process Technology Unit, focused at the next generation 

of semiconductors. 

 

4.4.  IMEC’s IPR-model  

Crucial for its IIAP business model is an aligned IP-strategy so that all collaborating 

partners are able to build their own and unique IP-portfolio on top of shared IP.  

IMEC has elaborated an IP-strategy to stimulate this technology development and to 
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limit blocking amongst its corporate partners (Van Helleputte, 2004).3  The basic 

platform technologies are accessible to all its partners.  These technologies, developed 

by IMEC or by IMEC in collaboration with partners, are still in a precompetitive 

phase and require additional R&D to be ready for final application.  Corporate 

partners can build on these technologies to develop proprietary IP in line with their 

own commercial needs. All technology developed at the IMEC laboratories, in 

execution of dedicated IIAP-programs by academic or industrial researchers, is 

contractually co-owned by IMEC unless otherwise contractually stated. 

IMEC’ s IPR-model classifies patents based on ownership.  IMEC patents 

referring to background knowledge on semiconductor technologies are assigned 

exclusively to IMEC and labeled “ R0” . External partners in the IIAP gain access to it, 

as far as needed for the exploitation of the program, via a non-exclusive and non-

transferable license.  These patents constitute the more fundamental technological 

knowledge base generated by IMEC in order to set up platform programs within 

particular strategic fields with the intention of attracting external partners.  

Technologies that are co-developed with companies in the context of IIAP projects, 

i.e. the collaborative industrial R&D projects conducted at IMEC’ s laboratories are 

labeled “ R1” .  These patents are co-assigned to IMEC and the companies 

collaborating in R&D.  A partner gets access to the generated IP within the technical 

domain as defined in its contract with IMEC. Technologies which result from 

proprietary research activities within IMEC, applying the generic “ R1”  results to the 

company specific setting are labeled “ R2”  and are assigned exclusively to the partner. 

IMEC’ s business model and the corresponding IP-model are recognized 

worldwide as a successful medium to stimulate industry-science links, R&D 

                                                
3 Johan Van Helleputte is the director for strategic development at IMEC. 
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collaboration and ultimately technology development in the industry.  For our analysis, 

it allows to track the mobility of people and ideas around IMEC, as will be detailed in 

the next section. 

 
 
5. Data and Methodology  

5.1. Data and Sample  

5.1.1. Sample Selection  

Our dataset is constructed by collecting first all patent applications filed by IMEC 

between 1990 and 2005 which we retrieved from the Worldwide Patent Statistical 

Database (PatStat edition April 2008). From this sample of 578 patents,4 we identified 

531 unique inventors, i.e. inventors affiliated to IMEC or to one of its partners, 

including companies, universities or other research institutes. This set of patents was 

validated by IMEC.  

Second, we retrieved all patents from IMEC affiliated inventors, i.e. inventors 

on an IMEC patent but not on IMEC payroll at the time of patent application. We 

name these inventors “ boundary crossing”  inventors as they have been active in the 

generation of IP at IMEC at some point in their career, without being an IMEC 

employee. All different name variants and corresponding person identification 

numbers of this set of inventors were retrieved using search keys to take into account 

different spellings. We collected 1863 patents mentioning at least one IMEC affiliated 

inventor.5 

                                                
4 These patents include EPO, USPTO and PCT patent applications 
5 The use of detailed personnel data obtained from IMEC for all inventors in our sample allows us to 
identify the affiliation of an inventor at a particular moment in time, differentiating IMEC and non-
IMEC  employees at the time of patenting. The match of inventor names was made based on matches 
of name, first name, initial and address. In the case of differences in addresses or names, we checked 
the technology field of the patent and the applicant name to determine a match. While this rigorous 
approach might lead to false negative matches (type I error), it minimizes/eliminates false positive 
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Third, we collected all patents citing the set of original patents with IMEC as 

an applicant. These patents share the same technological space as the IMEC patents 

and provide a reasonable control group for our selection of patents.  

The final sample used consists of 1,089 USPTO patents, 1,835 unique 

inventors and 87 companies. 6  Figure 1 provides a visual description of the final 

sample construction. The sample can be divided between 221 company-owned patents 

which mention at least one boundary crossing IMEC affiliated researcher employed 

by the assignee company as inventor and 868 company-owned patents without this 

inventor link but citing a patent (co)assigned to IMEC. Each group of patents can 

further be subdivided based on whether the applicant company is a partner 

collaborating in IMEC’ s industrial affiliate program. This results in 176 patents 

assigned to partner companies and mentioning a boundary crossing IMEC visiting 

researcher as inventor, 45 patents assigned to non-partner firms but having a boundary 

crossing inventor on the patent, 435 patents assigned to partner companies and citing 

IMEC patents and 433 patents assigned to non-partner companies but citing IMEC 

patents. This classification allows us to analyze the separate and combined effects of 

having “ a seat at the table”  and having “ a spot in the lab”  at IMEC. 

Insert Figure 1 here 

5.1.2. Classification of  patents: invention-, inventor-, and organizational-

level links with IMEC 

                                                                                                                                       
matches (type II error). Given our objective to trace inventor interaction and mobility, this conservative 
approach seems most appropriate.  
6 The initial sample consists of 5,802 patents (825 IMEC patents, 1,038 patents from IMEC affiliated 
inventors and 3,939 other patents citing IMEC patents), 7,566 unique inventors and 1,348 unique 
applicants, including around 1,200 companies, 82 universities and 66 research centers. For the 
remainder of the analysis, we restrict attention to USPTO patents only (3,606) and subsequently 
eliminate patents (co)assigned to IMEC (302), patents not assigned to companies (488), patents from 
companies with less than 4 patents in our sample, patents which do not share the same technological 
space as the IMEC patents, for which we don’ t have all relevant characteristics or for which we don’ t 
have information on the affiliation of the IMEC visiting researcher (1,745).  
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To classify the patents we have exploited IMEC’ s basic IPR-model. We used the 

following procedure in line with IMEC’ s IP-model and defined the IMEC 

technologies as follows:  

� R0 are patents exclusively assigned to IMEC or co-assigned to IMEC and 

universities or individuals,  

� R1 are patents co-assigned to IMEC and affiliated “ partner”  companies  

In addition, we define four new categories:  

� Crossing-Partner patents are patents assigned to an IMEC partner 

organization (i.e. a member of its IIAP Program) and developed by a boundary 

crossing inventor, i.e. an inventor that has been active in the generation of IP 

at IMEC at some point earlier in his career.  

� Citing-Partner patents are patents assigned to IMEC partners citing R0-R1 

patents, but without being developed by a boundary crossing inventor.  

� Crossing-NonPartner patents are patents assigned to non-partner companies, 

but that have a boundary crossing inventor as an inventor on the patent. 

� Citing-NonPartner patents are patents assigned to non-partner companies, 

citing R0 or R1 patents but without being developed by a boundary spanning 

inventor. 

 

The classification of the patents according to this methodology allows us to estimate 

the impact of boundary crossing inventors and/or firm partnerships at the invention 

(patent) level. The strongest link is a combination of boundary crossing inventors and 

organizational-level links, as is the case for Crossing-Partner patents. Patents that 

only have an organizational-level link with the research center are Citing-Partner 

patents, while Crossing-NonPartner patents are patents with only an inventor link to 
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IMEC. These are most likely poaching cases whereby a non-partner company hires 

away an affiliated or visiting researcher. Finally, Citing-NonPartner patents don’ t 

have any affiliated nor inventor link except for the fact that these patents cite an R0 or 

R1 and, hence, were developed in the same technology space. These are the ultimate 

control group (base case) for comparison with our various link-categories. Note that 

in contrast with some of the literature, we do not consider a citation by a firm patent 

to IMEC as a genuine knowledge link. We use citations only for identifying patents 

that are related in technology space.  

Figure 2 below gives an overview of the classification of patents according to 

the links with science through IMEC.  

Insert Figure 2 here 

 
5.2. Measures for Innovation Quality, Cumulativeness of Research, and, 

Technology Lead Time  

By classifying all patents according to boundary crossing inventor and/or partnership 

links with IMEC, using the Citing-NonPartner patents as the base case, we can 

estimate the impact of different links and their interactions.  In terms of impact, we 

consider various outcome dimensions.  

 

5.2.1. Quality of Innovation 

To evaluate the effect of linking to basic research through IMEC on the technological 

impact and the economic value of an organization’ s patents, we employ a commonly 

used indicator in past studies to measure patent quality. The most used indicator of 

patent value and quality is the number of forward citations received from subsequent 

inventions. The number of forward citations a patent receives is related to its 

technological importance (Albert et al., 1991; Carpenter et al, 1993; Henderson et al., 
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1998; Jaffe et al., 2000), social value (Trajtenberg, 1990), private value (Harhoff et al, 

1999; Hall et al., 2005), patent renewal (Harhoff et al, 1999) and patent opposition 

(Lanjouw and Schankerman, 1999). Research based on an inventor-targeted survey to 

estimate the economic value of European patents also reveals that although forward 

citations carry a lot of noise, it proxies closely the estimated economic value 

(Gambardella et al., 2008). We calculate the total of all forward citations received by 

an individual patent. We also used a fixed citation window of 3 years with similar 

findings.  

Given that the value distribution of inventions is extremely skewed with a 

small fraction of all inventions contributing disproportionally to company 

performance, we also develop a measure of high impact or breakthrough invention. 

To calculate a measure of technology breakthrough, the mean and standard deviation 

of forward citation count are calculated for all US patents within the same 3 digit 

technology class application year group. A patent is labeled as breakthrough in case 

the count of forward citations is larger than the mean plus 2 times the standard 

deviation in their respective groups (see Fleming and Arts, 2011). 

In line with our hypotheses developed in section 3, we expect a positive 

correlation between boundary spanning links and forward citations, i.e.  Crossing 

and/or Partner patents are expected to have a higher rate of forward citations and a 

higher probability of breakthroughs as compared to the base case of Citing-

NonPartner patents.   

V(Crossing-Partner), V(Citing-Partner), V(Crossing-NonPartner) > V (Citing-NonPartner)  (V1) 

Comparing Crossing-Partner patents with Citing-Partner patents would test for the 

additional effect of a boundary crossing inventor link for partner firms.  Comparing 
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Crossing-Partner with Crossing-NonPartner patents would test for the additional 

effect of an institutional partner link for firms using a boundary crossing inventor link:  

V(Crossing-Partner) > V(Citing-Partner)     (V2.1) 

V(Crossing-Partner) > V(Crossing-NonPartner)    (V2.2) 

V2.1 and V2.2 each test a part of a complementary relationship between institutional 

and inventor links.  If inventor and organizational links would be fully 

complementary, i.e. boundary spanning inventor links are more effective for affiliated 

partners and/or affiliated partners get more value out of boundary spanning inventor 

links, we have Crossing-Partner patents outperforming BOTH Citing-Partner and 

Crossing-NonPartners all relative to Citing Non-Partners patents.   

V(Crossing-Partner) + V (Citing-NonPartner)  > V(Citing-Partner) + V(Crossing-NonPartner)       (V3) 

 

5.2.1.1. Cumulativeness of Innovation 

Firms working in a particular technology area can build on their internal knowledge. 

Self-citations reflect this capacity of the firm to build further on its existing internal 

technologies. We calculate the proportion of forward citations of our sample patents 

that are self-citations as an indicator for the fact that firms tend to build on these 

technologies relative to others building forward on their technologies. Hence, the 

proportion of self-citations reflects the extent to which the company is able to, or 

attempts to, appropriate the returns to its R&D investments (Ahuja, 2003, Jaffe & 

Trajtenberg 2002).   

 

In line with our hypotheses developed in section 3, we expect firms with links 

to IMEC to have a higher capacity to build on their internal knowledge.  

C(Crossing-Partner), C(Citing-Partner), C(Crossing-NonPartner) > C (Citing-NonPartner)  (C1) 
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Comparing Crossing-Partners with resp Citing-Partners and Crossing-NonPartners, 

tests for the additional effects of resp. the inventor and the institutional link : 

C(Crossing-Partner) > C(Citing-Partner);      (C2.1) 

C(Crossing-Partner) > C(Crossing-NonPartner);     (C2.2) 

We particularly expect the link through boundary spanning inventors should improve 

cumulativeness (C2.1).  If inventor and organizational links are complementary, i.e. 

boundary spanning inventor links are more effective for affiliated partners and/or 

affiliated partners can build cumulativeness better with boundary spanning inventor 

links, we have: 

C(Crossing-Partner) + C (Citing-NonPartner)  > C(Citing-Partner) + C (Crossing-NonPartner)       (C3) 

 

5.2.1.2. Technological Lead Time 

Citation lags between patents are used to analyze the speed at which the knowledge 

captured by the invention is assimilated and used to develop subsequent inventions. 

Here we refer to how fast companies start developing new technologies in the same 

technology space as the newly developed technologies at IMEC, i.e. we calculate – in 

years – the citation lag of citations of patents to R0 and R1, the basic IMEC 

technologies 

 

In line with our hypotheses developed in section 3, we expect firms with links to 

IMEC to be faster in developing new technologies.      

LT(Crossing-Partner), LT(Citing-Partner), LT(Crossing-NonPartner) > LT (Citing-NonPartner)  (LT1) 

Comparing Crossing-Partners with resp Citing-Partners and Crossing-NonPartners, 

tests for the additional effects of resp the inventor and the institutional link.  Again we 

expect particularly the link through crossing inventors to improve lead time: 
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LT(Crossing-Partner) > LT(Citing-Partner);      (LT2.1) 

LT(Crossing-Partner) > LT(Crossing-NonPartner);      (LT2.1) 

And if inventor and organizational links are complementary, Crossing-Partner patents 

will outperform in terms of Lead Time both Citing-Partner and Crossing-NonPartner 

patents, all relative to the base case of Citing-NonPartner. 

LT(Crossing-Partner)+LT(Citing-NonPartner) > LT(Citing-Partner)+LT (Crossing-NonPartner)  (LT3) 

 

5.2.2. Control Variables  

To obtain consistent estimates, we include control variables at the invention level, 

inventor level and firm level. 

At the invention level, we first control for 30 patent technology classes as 

defined by Fraunhofer (FhG-ISI, Germany) based on concordance with IPC codes 

(OECD, 1994). As pointed out by Fabrizio (2009), patents in fast evolving 

technological classes will cite more recent patents on average so that we need to 

control for this bias. Also, as illustrated by Hall and Ziedonis (2001), citation lags in 

computers, communications and electronics are relatively short compared to other 

technological fields. Moreover, different technological classes are characterized by 

different citation patterns, both in the amount and the scope of citations to patents and 

scientific literature. Traditional technological fields typically cite more and are cited 

less, whereas emerging technological fields are cited more but are average in terms of 

citations made.  

Second, we control for changes in citation patterns over time and for 

truncation by including application year dummies.  

In addition, we introduce patent scope as the number of core International 

Patent Classification (IPC) codes. Patent scope could determine the extent of patent 
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protection and monopoly power and thus the economic value of an invention 

(Scotchmer, 1991). But, more IPC classes covered by the patent could also affect the 

likelihood of being cited as the patent covers more technology space. The count of 

citations to scientific work (NPRS) is included as an additional control as more 

references to scientific work are associated with a higher number of received citations 

merely because the act of publication allows the ideas underlying the patent to diffuse 

more broadly and rapidly (Fleming and Sorenson, 2004). Similarly, we control for the 

number of backward patent references to control for unobserved factors affecting 

citation behavior. 

Finally, we include the number of inventors as an additional control because 

more inventors might lead to a faster and greater diffusion of the tacit and complex 

knowledge underlying the patent, resulting in different forward citation patterns.  

Besides controls at the level of the invention, we include for each patent 

inventor his experience to control for a potential inventor selection issue. Particular 

types of technologies might be developed by more competent or experienced 

researchers. We calculate inventor experience as the number of patents filed at the 

USPTO by the inventors before the application year. We made use of “ the careers and 

co-authorship networks of U.S. patent-holders”  data (Lai, D’ Amour and Fleming, 

2009) to identify inventor histories. 

Finally, we introduce for each patent additional measures on the organization of 

R&D at the firm level to control for firm specific variation. Several stories have been 

advanced as to why organization size matters for research productivity. First, larger 

organizations wield more resources and are able to exploit economies of scale in 

research (Cassiman et al., 2005). Cassiman, Perez-Castrillo and Veugelers (2002) find 

that larger firms have an incentive to proportionally invest more in basic research as it 
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increases the productivity of applied R&D. Second, larger organizations allow more 

specialization. In larger firms, researchers seem to work on more projects but are 

more specialized in the type of projects they engage in (Kim et al., 2004). Third, 

larger companies are able to exploit economies of scope. As larger firms are active in 

different product markets and technology domains, more opportunities for exploiting 

economies of scope within the firm arise (Cassiman et al., 2005; Henderson and 

Cockburn, 1996).  Scale is calculated as the number of US patents filed by the firm in 

the 5 years before the application year of the patent, Scope as the number of distinct 

IPC codes of a company’ s patents in the 5 years before the application year of the 

patent and Age Company as the number of years since the company’ s first patent at 

the moment of the filing of the focal patent.7  Sorenson and Stuart (2000) find that on 

the one hand older firms produce more patents, but on the other hand these same firms 

produce less valuable patents. Older firms self-cite more and have older backward 

citations.8   

Insert TABLE  3 & 4 here 

5.3.  Econometric Methodology  

5.3.1. Quality of Innovation  

To estimate the technological impact of the patents as measured by their number of 

forward citations, we use count models as the dependent variable is a non-negative 

integer. The specification of our baseline model as a Poisson or a Negative binomial 

model follows previous studies. We first estimate the Poisson quasi-maximum 

likelihood model (PQML) because this renders consistent estimates given that the 

                                                
7 These firm-level variables vary across different patents of the same company applied for at different 
moments in time. 
8 Note that their interpretation of self citations does not correspond to our notion of appropriation in 
science intensive businesses. See also Catani (2005) for a similar interpretation of self citations in 
optical fiber technology. 
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mean is correctly specified (Gouriéroux et al., 1984). We also use a Negative 

Binomial model which allows for overdispersion and heterogeneity across 

observations. Moreover, our sample has a large number of observations with zero 

value (31% of 1,089 patents). To deal with this issue, a Zero-Inflated Negative 

Binomial model (ZINB) is estimated whereby the population is divided between two 

latent groups, the always-zero group, i.e. patents that will never receive a citation, and 

the not-always-zero group, i.e. patents which at least have the potential of receiving 

citations (Long, 1997). To estimate the likelihood of breakthrough or high impact 

inventions we use Probit models. 

 

5.3.2. Cumulativeness of Innovation 

To estimate the importance of building further internally on IMEC related technology 

we regress the proportion of self-citations of the patent on our control variables and 

patent indicators for the type of link with IMEC. We use OLS and heteroskedastic 

Tobit models to control for censoring of the observations. 

 

5.3.3. Technological Lead Time  

To estimate the speed at which research teams with different inventor- and 

organizational-level links with IMEC assimilate IMEC’ s prior art and develop 

subsequent inventions built on this prior art, we use forward citation lags, i.e. the lag 

in years between the application date of the cited patent application – R0 or R1 in this 

case – and the application date of the citing patent application, as dependent variable. 

We apply a simple OLS specification with robust standard errors clustered by citing 

firm. (TO BE COMPLETED) 
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5.4. Partner and Inventor Selection Issues 

We need to address potential selection issues at the level of the partner firm and 

inventor.  One could argue that firms which expect to get more out of a partnership 

with IMEC are more likely to become a partner in the first place.   To formally control 

for a partner selection issue, we estimate the probability of a particular patent to be 

from an affiliate partner at a particular moment in time in function of patent 

characteristics, a company’ s core technological area (8 categories), the location of its 

headquarters (USA/Europe/Japan), whether the firm is in the top 25 of largest 

semiconductor firms as well as its scale, scope and age.  Consequently, we calculate 

the propensity scores to be a partner patent and link each partner patent to the nearest 

neighbor non-partner patent, i.e. we compare Crossing-Partners and Citing-Partners 

patents with Crossing-NonPartners and Citing-NonPartners patents.  

 

Beyond the partner selection issue, there might also be an inventor selection issue in 

case firms would  send their more competent or less competent researchers to IMEC. 

From interviews with managers from IMEC we learned that this is not necessarily the 

case because companies do not want to share their most valuable human resources 

with other firms -including competitors- while at the same time making sure that the 

participating researchers are able of identifying, absorbing and integrating the relevant 

knowledge. IMEC does attempt to control such behavior by providing partners with 

regular evaluations of the affiliate researchers in the IMEC teams. We attempt to 

check the inventor selection issue by matching the prior patents of IMEC-visiting 

researchers, i.e. prior to these visits, with a group of comparable patents applied for by 

the same firm within the same year. Results obtained from T-tests indicate that the 
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paired group of patents do not differ significantly,9 suggesting that there is no obvious 

inventor selection issue.10   

 

6. Results  

6.1. Descriptive analysis  

Table 1 presents an overview of all the patents in our sample categorized according to 

our methodology and by technology field. IMEC patents are predominantly classified 

as semiconductor patents. As for partner and non-partner patents we observe more 

variety in technology field as we are moving closer to applications. 

Insert TABLE 1 here 

Table 2 shows all the firms listed in the top25 of firms in the semiconductor industry 

based on sales between 1987 and 2008 (Source: iSuppli corporation ranking). Of the 

43 firms appearing in the list between 1987 and 2008, 20 firms are IMEC affiliated 

partners during the entire period. We can also appreciate IMEC’ s position in the 

global semiconductor industry from the fact that although not all firms are IMEC 

IIAP partners, all but 14 firms (of which 6 more recently affiliated partners) are 

represented in our dataset through patents linking to IMEC.  

Insert TABLE 2 here 

Table 3 presents some descriptive statistics for the total sample, while Table 4 gives 

an overview of descriptive statistics by type of patent. The IMEC patents (R0-R1) 

have fewer backward citations (patent references) and are more likely to cite the 

scientific literature (non-patent reference binary), confirming the more “ basic”  

                                                
9 We found no statistically significant differences between the number of citations received within three 
years, the proportion of self citations, the number of IPC codes, the number of backward patent 
citations, the number of non-patent references and the number of inventors. 
10 In the case that partners are likely to send less competent researchers, this would actually bias the 
results against us. 
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scientific and original nature of these patents. 14% of the R0 patents are co-developed 

with universities illustrating IMEC’ s strategy to collaborate with academics in order 

to build up its background knowledge and confirming its role as bridging institute. 

Insert TABLE 3&4 here 

When we look at the company patents, we see that Crossing-Partner patents, 

which have both a boundary crossing inventor and an institutional partner link to 

IMEC, receive the highest number of forward citations. This is particularly clear when 

we restrict the citation window to 3 years, controlling for the exposure time of patents.  

These patents are also most likely to be a “ break-through”  patent.  Citing-Partner 

patents with only an institutional partner link to IMEC, but without the boundary 

crossing inventor link, are as likely as Crossing-Partner patents to receive forward 

citations, but the count of these citations are lower, and the probability of being a 

“ break-through”  patent is also significantly lower.11  

Both Crossing-Partner and Citing-Partner patents are more likely to be built 

upon internally as the partner is more likely to continue developing technology in that 

area. Self-citations of these patents are much higher12.   

Contrary to our expectation, however, especially given the strategic 

importance of technology lead time in the industry, we do not find that patents with 

boundary crossing inventors and/or organizational partnership links with IMEC have 

shorter citation lags.   

 

In summary, these first descriptive results already indicate that the tighter the 

link with IMEC, the more able  a company seems  to assimilate the knowledge 

                                                
11 Ttest on difference of means Crossing-Partner vs Citing-Partner: count forward citations within 3 
year: t=3.8318***; highly cited: t=2.5764*** 
12 Ttest on difference of means Crossing-Partner vs Crossing-NonPartners:t=2.9842***; Citing-
Partner vs Citing-NonPartners:t=3.2297*** 
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captured by the invention and to use this knowledge to develop subsequent inventions. 

We argued that because of the tacitness and complexity of know how underlying 

leading edge research, researcher interaction and mobility does play an essential role. 

We indeed observe that individual inventors visiting the research center in order to 

collaborate with other industrial and scientific researchers in joint R&D projects – i.e. 

boundary crossing inventors – seem to play a decisive role as link between industry 

and IMEC, but most importantly when they are associated with firms that have an 

institutional partnership link with IMEC. These descriptive statistics, although not 

controlling for other factors, are already supportive for the positive impact of IMEC 

links for firms’  technology development, particularly the combined inventor and 

partner link.  

 

6.2. Multivariate analysis: Quality of Innovation 

Table 5 shows the results of our count model estimations. Crossing-Partner patents 

receive between 46% and 94% more citations compared to the control group of 

Citing-NonPartner patents.   For firms that are not IMEC affiliated partners, patents 

developed with the assistance of boundary crossing inventors, are not more valuable 

compared to patents developed without the assistance from boundary crossing 

inventors.  Our expectation that boundary crossing inventors are a pivotal mechanism 

for linking therefore only seems to hold for firms that also have a boundary crossing 

link at the institutional level. All these results are supportive for complementarity 

between organizational and inventor boundary spanning mechanisms.  The formal test 

for complementarity (Chisq-test on V3) is significant at 7% for the fixed citation 

window results. 
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The combination of the low (and insignificant) coefficient for Crossing-

NonPartner patents and the minimal difference between the coefficients of Crossing-

Partner and Citing-Partner patents13
 are not supportive of our hypotheses that when 

comparing the organizational and the inventor link, the inventor link is the strongest 

and can generate the most extra value.  

Insert TABLE 5 here 

On breakthroughs, crossing-Partner patents seem more likely to have a high impact 

across all models.  When correcting for company and inventor characteristics, this 

higher probability of a high impact patent seems to hold not only for Crossing-

Partner patents, but for all patents with partner and/or inventor links . 

Insert TABLE 6 here 

 

6.3. Cumulativeness of Innovation 

Building further on technology linked to IMEC technologies is an important 

way to capitalize and appropriate returns to the R&D investment. As expected, IMEC 

partners are more likely to build further on these technologies, as indicated by the 

higher proportion of self-citations received by both Crossing-Partner and Citing-

Partner patents. This result is in line with Ziedonis and Ziedonis (2005), which find 

that member firms of the SEMATECH consortium are building upon the results of 

their collective research to a greater degree than are non-member firms. These patents 

are expected to have on average a 0.0624 to 0.1064 14  larger proportion of self 

citations relative to comparable patents by non-affiliates (Table 6). Although we find 

that partner patents with a boundary crossing inventor link have a larger proportion of 

self citations compared to patents of affiliate partners without a boundary crossing 
                                                
13 The formal test of V2.1 is only significant at 13%, while the test for V2.2 is significant at 3.7%  
14 Marginal effects in OLS regressions 
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inventor link, this difference is not statistically significant (C2.1).     There is hence no 

evidence of significantly higher effects from the inventor link.     

A patent from a non-partnering firm but with a boundary spanning inventor 

link has a significantly smaller proportion of self citations compared to similar patents 

of partner companies (C2.2). This result seems to suggest that the hiring company is 

not able to fully appropriate the return to its investments relative to others building 

forward on the technologies developed by this researcher, if there is no institutional 

link with IMEC. Being able to fully exploit the researcher mobility link seems to 

require a complementary institutional link. 

All these findings are supportive of the complementary role of boundary 

spanning inventors for affiliated partners in order to better absorb the complex and 

tacit technological knowledge underlying micro-electronics research via mobility and 

communication as to capitalize and appropriate returns to the R&D investment 

through the internal development of the next generation of technologies.  The test for 

complementarity (Chisq-test on C.3) indeed is statistically significant at the 1% level.    

Insert TABLE 7 here 

6.4. Technological Lead Time  

We argued that lead time of innovation projects are increasingly a differentiator in the 

micro-electronics business because of the relentless shortening of product life cycles. 

Unfortunately, our descriptive statistics do not seem to support this prediction (Table 

8).  

 

6.5. Partner selection   

While the empirical results are supportive for the tangible effects of links with IMEC, 

particularly for the combination of inventor and organizational spanning mechanisms, 
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we need to address potential selection issues at the level of the partner firm and the 

inventor.  

To formally control for a partner selection issue, we estimated the probability of a 

particular patent to be an affiliate partner at a particular moment in time.  The 

selection model (not reported) results in a pseudo R2 of 0.45 and we make 82% 

correct predictions15. Consequently, we calculate the propensity scores to be a partner 

patent and use kernel matching to  compare Crossing-Partners and Citing-Partners 

patents with Citing-NonPartners patents, which is our bench-mark case (hypotheses 

1).  We also compare Crossing-Partners to Crossing-NonPartners to test our 

hypotheses on the extra value added from an institutional link (hypotheses 2.2).  The 

matched sample procedure does not allow testing for an extra effect from an inventor 

link (hypotheses 2.1) nor for full complementarity between both types of links 

(hypotheses 3).  Results are presented in Table 9. 

Insert TABLE 9 here 

The matched patents reveal a similar story as from our regressions with some 

interesting nuances. Compared to the benchmark case of Citing-NonPartner patents, 

the superior performance of Crossing-Partner patents is confirmed: boundary 

crossing inventors of affiliate partners matter for the quality of the technologies 

developed as shown for the forward citations and the self-citation rate.     The effect of 

an institutional link only, i.e. comparing Citing-Partner patents to Citing-NonPartner 

patents, shows significant positive effects on self-cites.   The results from comparing 

Crossing-Partners to Crossing-NonPartners, i.e. the additional effect of partnership 

for inventor links, confirms  a significantly higher effects from Crossing-Partners 

patents on average quality as well as on the likelihood of  high impact.  On self cites,  

                                                
15The constant only model would correctly assign 56% of the patents. 
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we find that patents of crossing inventors of affiliate partners score significantly 

higher as compared to matched patents from crossing inventors of non-partners, thus 

confirming the importance of an organizational link to exploit the advantages of an 

inventor link 

 

7. Discussion and Conclusion 

In conclusion, we find strong support for IMEC affiliated partners to develop higher 

quality innovations in the technology domain where IMEC is active. Furthermore, 

partner firms are more likely to build on these technologies internally, improving 

appropriation of the returns to R&D. Overall, we therefore conclude that 

institutionally linking to IMEC has provided some tangible benefits for IMEC 

partners. 

We have found that the boundary crossing inventor link, i.e. researchers of a 

partner actively engaged in joint research with IMEC are an important link in this 

chain as they allow the partner to develop higher quality innovations but in particular 

as they allow to capitalize the returns to R&D through  internal development of the 

next generation of commercial technologies. The technologies developed by the 

bridging researchers are extensively used internally as a platform for further 

technology development.  

As these effects from boundary crossing inventor links are significantly 

stronger for IMEC partners, this suggests that companies should have a 

complementary institutional link to benefit from cross-institutional employee 

interaction and mobility, in particular for the appropriation of returns to R&D through 

establishing cumulative technology development.   Boundary crossing inventor links 

do not tell the whole story.  Their effectiveness is contingent on an organizational 
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crossing link.  An organizational crossing link with IMEC is what matters most. Firms 

need to buy a seat at the table before a spot in the lab can have any effect. 

  Although the results confirm an overall positive effect on innovative 

performance from linking to basic science, they are also highly supportive of the 

paper’ s research strategy to differentiate among the linking mechanisms as well as the 

impact dimensions considered.   At the same time they  also suggest important 

avenues for further research. First, the analysis should extend the set of linking 

mechanisms (e.g. co-publications).   Secondly, more information on how firms 

organize internally for effective linking from case studies at partnering and non-

partnering firms would be helpful to further fine tune the search for institutional 

controls on the effects and the partner selection analysis.  Particularly critical 

company characteristics beyond the scale and scope of R&D and the age of a 

company need to be factored in to explain appropriation success.   Thirdly, in order to 

better understand what makes the IMEC model so successful, a more indepth study of 

IMEC is in order.   As IMEC is not characterized by major regime shifts over time 

which would allow to pinpoint critical characteristics for success, comparing with 

other research consortia formula, is a more promising avenue to understand what 

makes IMEC special.   Sematech and MCC for instance, are alternatively consortia 

models in semiconductors which differ sufficiently in terms of IP model, public and 

private funding, collaboration model as well as in success (Ziedonis & Ziedonis 

(2005)) to make for a fruitful comparison analysis. 
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Figure 1: Final Sample Construction 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Classification of Patents 
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TABLE� ��Patents by Technology Field 
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TABLE 2: Ranking Semiconductor Companies 
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TABLE 3: Descriptive Statistics 
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TABLE 4: Descriptive Statistics by Patent Type 
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TABLE 5: Count Forward Patent Citations as Dependent Variable 
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TABLE 6: Dummy High Impact Invention as Dependent Variable 
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TABLE 7: Proportion Self Citations as Dependent Variable 
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TABLE 8: Citation Lag R0/R1 Cited 
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TABLE 9: Matched Partner/Non-Partner Patents: Nearest neigbor 

  PARTNER 
(TREATED) 

NON-
PARTNER 

(NON-
TREATED) t 

���%
����   
 

P>|t| 

CROSSING PARTNER vs 
CITING NON-PARTNER 

Count forward cit 3y Unmatched 4.41 2.86 2.88 0.00 

 Matched 4.57 1.40 4.25 0.00 

High Impact Unmatched 0.09 0.04 2.27 0.02 

 Matched 0.09 0.01 3.52 0.00 

Proportion self citations Unmatched 0.21 0.13 2.96 0.00 

 Matched 0.21 0.04 5.99 0.00 

Citation lag Unmatched     

 Matched     

 

CITING PARTNER vs 
CITING NON-PARTNER 

Count forward cit 3y Unmatched 2.38 2.86 -1.81 0.07 

Matched 2.47 2.49 -0.07 0.94 

High impact Unmatched 0.04 0.04 -0.35 0.72 

Matched 0.04 0.05 -0.53 0.60 

Proportion self citations Unmatched 0.20 0.13 3.23 0.00 

Matched 0.20 0.07 6.74 0.00 

Citation lag Unmatched     

Matched     

CROSSING PARTNER vs 
CROSSING NON-PARTNER 

Count forward cit 3y Unmatched 4.41 1.64 1.97 0.05 

Matched 5.39 1.69 3.91 0.00 

High Impact  Unmatched 0.09 0.07 0.52 0.61 

Matched 0.11 0.04 2.06 0.04 

Proportion self citations Unmatched 0.21 0.05 2.98 0.00 

Matched 0.24 0.18 1.73 0.09 

Citation lag Unmatched     

Matched     
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