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Abstract

We investigate the emergence of momentum and reversal anomalies in a
general equilibrium model with complete markets and cognitively biased
agents, accounting for the presence of representativeness heuristic, con-
servatism, and anchoring and adjusting in their beliefs. We characterize
anomalies by studying return autocorrelation patterns, price gaps following
sequences of different events, and relative performances of suitably defined
portfolios. These three characterizations are not equivalent. They capture
different aspects of mispricing and relate differently to the behavioral heuris-
tics that we consider. Overall, the model is generically able to reproduce
the empirical evidence of momentum profits that subsequently revert.

JEL Classification: G41, D53, G12, G14

Keywords : Momentum; Reversal; Biased Learning; Bayesian Learning; Model
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1 Introduction

In recent decades, a large body of empirical evidence has accumulated on the ex-
istence of common mispricing patterns in different financial markets around the
world: returns seem to keep the recent trend for a while (momentum) and then
revert toward average levels (reversal). Three groups of studies can be roughly
identified to support this evidence. The first group is based on portfolio compari-
son exercises and has a marked cross-sectional dimension. It revolves around the
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performance analysis of portfolios composed of securities that performed the best
or worst in the recent past. In this spirit, Jegadeesh and Titman (1993, 2001),
using US stock data from the 1960s to the 1990s, show that a portfolio long on
the best and short on the worst performing stocks over the last 3 to 12 months
provides significant positive abnormal returns in the following 3 to 12 months. The
abnormal performance disappears on longer horizons. De Bondt and Thaler (1985,
1987), using again US stock data but considering observations from the 1920s to
the early 1980s, show that a portfolio long on the worst performing stocks over the
last 3 to 5 years (the Loser portfolio) significantly outperforms a portfolio long on
the best-performing stocks over the same time window (the Winner portfolio) over
the next 3 to 5 years. Rouwenhorst (1998), Moskowitz and Grinblatt (1999), and
Asness et al. (2013) extend the previous investigation, finding evidence of momen-
tum for, respectively, European stock markets, industrial portfolios, and different
markets and asset classes. The second group of studies focuses on price movement
after earnings announcements. They are based on the idea that stock prices do
not adjust immediately after an unexpected earnings announcement, but instead
show a predictable drift. Using a sample of US companies from the mid-1970s
to the early 1980s, Foster et al. (1984) investigated the cumulative abnormal re-
turns of ten portfolios based on estimated earnings surprises. They found that the
earnings surprise is associated in magnitude and sign with the performance of the
portfolios in the next 60 trading days. Bernard and Thomas (1989, 1990) confirm
the previous findings, considering a larger set of stocks and a longer period of time.
Milian (2015) shows that, in recent times, the effect has weakened and reports a
form of reversal, especially for liquid US stocks. An extensive critical overview of
the literature on post-earning announcement drift can be found in Fink (2021).
The third body of literature focuses on the temporal dimension, studying the au-
tocorrelation structure of the time series of individual security returns. Together
with the classical contributions of Poterba and Summers (1988) and Cutler et al.
(1991), the most notable piece of evidence comes from the analysis of Moskowitz
et al. (2012) on different asset classes and different countries during the period
1965-2009. The authors find significant time-series momentum (i.e. positive auto-
correlation of rescaled returns) for about one year that partially reverses afterward.
Lo and MacKinlay (1990) and Lewellen (2002) combine the cross-sectional dimen-
sion with the temporal dimension. They show that a lead-lag effect emerging from
the cross-serial correlation of returns contributes to generating portfolio evidence
on momentum and reversal.

These mispricing patterns are generally considered inconsistent with standard
asset pricing models (e.g. Lucas, 1978). Therefore, several behavioral theories have
been proposed to explain them. The idea is that widespread cognitive biases cause
a form of underreaction to news that is subsequently corrected, with the delayed
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correction resulting in a form of overreaction. The conditional nature of mispric-
ing, caused by biased and different reactions to sequences of good and bad news,
has been used to study anomalies in Barberis et al. (1998). The authors investigate
how conservatism and the representativeness heuristic may generate patterns in
an infinite-horizon representative agent framework. Bottazzi and Giachini (2022,
2024) extend that analysis to a general equilibrium model with complete mar-
kets and generic reinforcing and progressive belief updating rules. Bottazzi et al.
(2019), instead, consider an Evolutionary Finance model (Evstigneev et al., 2008,
2016; Bottazzi et al., 2018, 2023) characterized by temporary equilibrium, a com-
plete market, and agents investing in long-lived assets proportionally to expected
relative dividends.1 They show that price anomalies arise from the relative wealth
dynamics generated by heterogeneous agents with persistently misspecified be-
liefs. Other models prefer a time-series approach, characterizing price anomalies
through the autocorrelation structure and dispensing from explicitly comparing
reactions to sequences of good and bad news. For example, Daniel et al. (1998)
consider a representative agent characterized by biased self-attribution and over-
confidence in a finite-horizon economy. As private and public signals arrive, the
returns appear to be positively autocorrelated in the first period and negatively
autocorrelated afterward. Hong and Stein (1999), instead, employ a partial equi-
librium model in which news watchers interact with momentum traders. They
show that as news spreads slowly in the population of news watchers, returns are
positively autocorrelated in the first periods and then revert as a consequence of
the action of momentum traders. Somehow distancing from the behavioral finance
tradition, several efforts have recently been made to explain time-series momen-
tum and reversal in terms of informative asymmetries that affect heterogeneous
and (otherwise) rational agents. (see, e.g., Cespa and Vives, 2012; Ottaviani and
Sørensen, 2015; Cujean and Hasler, 2017). Luo et al. (2021) mixes the two ap-
proaches in a finite-horizon partial equilibrium model with incomplete markets.
They show that time-series momentum and reversal can result from the combi-
nation of early-informed overconfident investors, late-informed skeptical investors,
and a rational risk-averse market maker.

Most of the aforementioned theoretical contributions study the emergence of
momentum and reversal in a single-security model under partial equilibrium and
incomplete markets. Moreover, they focus exclusively on one definition, either
conditional or time series. Conversely, in this paper, we propose a general equi-
librium pricing model in which conditional, time-series, and cross-sectional price
anomalies can be clearly defined, investigated, and related to agents’ behavioral
biases. Considering complete markets and homogeneous agents that maximize the

1This is equivalent to assuming that each agent decides its portfolio by solving a representative
agent model under logarithmic preferences and its subjective beliefs.

3



geometrically discounted expected utility of consumption over an infinite horizon,
we show that the three types of anomalies, although related, are not equivalent.
Similarly to Barberis et al. (1998), agents learn by combining two bi-stochastic
Markov models, one favoring switching over persistence and one doing the oppo-
site. The weights used to combine the models evolve over time, and their update
rule is flexible enough to accommodate representativeness heuristic, conservatism,
and anchoring and adjusting.

We derive some general conditions for the emergence of conditional and cross-
sectional anomalies. Focusing on two analytically tractable cases, we investigate
the emergence of anomalies when different biases are active. We find that con-
servatism and the representativeness heuristic are not related to specific effects,
as the same range of anomalies can be observed or not observed under both bi-
ases. In the numerical investigation of the general case, anchoring emerges as a
key factor in determining the region of the parameter space where momentum or
conditional reversal are observed. At the same time, the degree of conservatism
appears to influence the level of agreement between the conditional and time-
series definitions, with an increasing effect on momentum and a decreasing effect
on reversal. Interestingly, time-series reversal is not much affected by changes in
behavioral parameters. The cross-sectional momentum appears generally in line
with the predictions of conditional and time-series definitions, whereas the link be-
tween cross-sectional, conditional, and time-series reversal appears weaker. This is
due to the role that formation and observation periods play in the cross-sectional
definition of anomalies. They add a further layer of variability that can lead to a
wide range of phenomena. Anchoring still plays a role in favoring momentum or
reversal, but the effect appears asymmetric.

The model is generically able to generate short-term momentum followed by
long-term reversal, replicating the empirical evidence. However, we do not find
evidence that the three types of anomalies, conditional, time-series, and cross-
sectional, occur together. For instance, we find evidence of the momentum profits
that subsequently revert in cross-sectional terms in regions of the parameter space
where conditional reversal does not occur.

2 The model

Consider an Arrow-Debreu economy with N identical agents, a homogeneous con-
sumption good, complete markets, infinite horizon, and discrete time indexed by
t = 0, 1, . . .. Call st ∈ {0, 1} the state realized at time t > 0. The state at
time t = 0 is s0 ∈ {0, 1} and is certain. The sequence σ = (s0, s1, s2, . . . , st, . . .)
indicates a path and σt = (s0, s1, s2, . . . , st) is the partial history until time t.
The set of all possible paths is Σ, the set of all partial histories until time t is
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Σt, C(σt) = {σ ∈ Σ|σ = (σt, . . .)} is the cylinder with base σt, and Ft is the σ-
algebra generated by the cylinders C(σt). By construction, (Ft)

∞
t=0 is a filtration

and F is the σ-algebra generated by the union of filtrations. We indicate with
P the true probability measure on (Σ,F), such that (Σ,F, P ) is a well-defined
probability space. We assume that the true data generating process is i.i.d. with
P (st+1 = 1|σt) = π ∀t, σ. The expectation is denoted by E and, when there is no
subscript or superscript, it is computed with respect to P .

Agents have a constant and homogeneous endowment ei(σt) = e > 0 ∀i, t, σ
and share the same subjective measure p on (Σ,F). Denoting with ci(σt) the
consumption of agent i at time t along path σ, the consumption levels solve

max
{ci(σt), ∀t,σ}

Ui =
∞∑

t=0

βt Ep[u(ci(σt)] =
∞∑

t=0

∑

σt∈Σt

βtp(σt)u(ci(σt))

subject to
∞∑

t=0

∑

σt∈Σt

q(σt) (e− ci(σt)) ≥ 0 ,

(1)

where β ∈ (0, 1) is the inter-temporal utility discount factor, q(σt) is the price
of the Arrow-Debreu security paying 1 if partial history σt is realized and zero
otherwise, and u(c) is a strictly increasing and strictly concave Bernoulli utility.

We assume that the subjective measure p is absolutely continuous with respect
to the true measure P , such that the equilibrium exists and is unique and markets
clear in every period. Given the homogeneity of the preferences and endowments
of the agents, the consumption of the agent i after a partial history σt is ci(σt) = e,
while the price of the Arrow-Debreu security reads q(σt) = βtp(σt), ∀t, σ.

3 Pricing Anomalies

We investigate the dynamics of price using a simple short-lived security. Consider
a claim issued on date t with a payoff of one if st+1 = 1 and zero otherwise.
For an investor holding a long position in this security, the occurrence of the
state of nature 1 is “good news” while the occurrence of 0 is “bad news”. Given a
partial history σt, the equilibrium price of this security is q(1|σt) = q(σt, 1)/q(σt) =
βp(1|σt), the subjective conditional probability that agents assign to observing
state 1 after σt multiplied by the discount factor. The return of this security reads
r(σt+1) = (βp(1|σt))

−1 if st+1 = 1 and r(σt+1) = 0 if st+1 = 0.
We study three alternative definitions of momentum and reversal. Since the

model is dynamic and encompasses an infinite horizon, we consider the asymptotic
values of the quantities of interest to avoid transient effects. The first definition
captures the modification of the expected price conditional on the last state of
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nature realized (Barberis et al., 1998; Bottazzi and Giachini, 2022). Let

Fj(σt) = p(1|σt, st+1 = . . . = st+j = 1)− p(1|σt, st+1 = . . . = st+j = 0)

be the rescaled price difference after a sequences of j good news and j bad news.

Definition 3.1 (Conditional momentum and reversal). Conditional momentum

occurs if lim supt→∞ E[F1(σt)] < 0, while conditional reversal occurs if ∃j > 1
such that lim inft→∞ E[Fj(σt)] > 0.

Returns tend to keep the trend if the price of the security after a good state
is, on average, lower than after a bad state. In other terms, if prices underreact to
news. Returns revert if after a sequence of good news the price tends to be higher
than after a sequence of bad news, that is, if prices overreact to long sequences
of concordant news. This definition is the most suited to capture and reproduce
evidence on post-earning announcement drift (see, e.g., Bernard and Thomas, 1989,
1990; Fink, 2021).

The second definition focuses on the autocorrelation structure of the returns
(Daniel et al., 1998; Hong and Stein, 1999; Ottaviani and Sørensen, 2015). It cap-
tures the presence of a form of predictability in the sequences of returns, avoiding
any specific conditioning on realized states.

Definition 3.2 (Time-series momentum and reversal). Time-series momentum

occurs if lim inft→∞ Cov[r(σt+1), r(σt)] > 0, while time-series reversal occurs if
∃j > 1 such that lim supt→∞ Cov[r(σt+j), r(σt)] < 0.

Momentum occurrs if the autocorrelation of returns is positive in the short-
run and reversal occurs if the autocorrelation becomes negative in the long-run.
This definition is the most suitable for capturing and reproducing evidence on
time-series momentum and reversal (see, e.g., Poterba and Summers, 1988; Cutler
et al., 1991; Moskowitz et al., 2012).

The third definition, directly inspired by the empirical exercises performed
by De Bondt and Thaler (1985, 1987) and Jegadeesh and Titman (1993, 2001),
compares the average performance of two portfolios. The first portfolio has a
long position of one unit in the risky security defined above and a short position
of one unit in a riskless security that pays one unit of consumption good in the
following period, whose return is 1/β. The second portfolio has opposite positions.
A formation period of length l is considered in which the cumulative returns of the
two portfolios are computed. The portfolio with the highest cumulative returns
is the winner, the other portfolio is the loser. If, in the following h periods, the
winner portfolio outperforms, in terms of cumulative returns, the loser portfolio,
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then momentum occurs. If the opposite is observed, then reversal occurs. Formally,
define the cumulative return of the winner portfolio given a partial history σt,

Wh,l(σt) =

{∑h−1
i=0 (r(σt−i)− β−1) if

∑h+l−1
j=h (r(σt−j)− β−1) > 0,∑h−1

i=0 (β−1 − r(σt−i)) otherwise.

Definition 3.3 (Cross-sectional momentum and reversal). Cross-sectional mo-

mentum with a formation period of length l occurs h periods after formation if
lim inft→∞ E[Wh,l(σt)] > 0. Cross-sectional reversal with a formation period of
length l occurs h periods after formation if lim supt→∞ E[Wh,l(σt)] < 0.

If p is i.i.d. , then limt→∞ E[Fj(σt)] = limt→∞ Cov[r(σt+j), r(σt)] = 0 ∀j. Thus,
neither conditional nor time-series momentum and reversal occur. With respect
to the cross-sectional definitions,

E[W1,1(σt+2)|σt] =
−π2F1(σt)

βp(1|σt, 1)p(1|σt, 0)
+

(1− 2π)(p(1|σt, 0)− π)

βp(1|σt, 0)
. (2)

The second term on the right-hand side of (2) implies that the sign of the expected
return of the winner portfolio is not exclusively decided by the occurrence of the
time-series momentum. Thus, cross-sectional anomalies can be observed even with
i.i.d. subjective measures.

More generally, if the belief of the agents is equal to or converges towards the
true process almost surely, then the risk-neutral measure converges towards P
and all anomalies disappear. Thus, in our framework, any pricing anomaly must
emerge from a persistently incorrect way of assigning probabilities to states of
nature. In particular, to prevent markets from being eventually efficient, agents
should not be able to learn the truth.

4 Belief updating with investor sentiment

The agents in our model are characterized by three types of possible cognitive
biases: representativeness heuristic, conservatism, and adjustment and anchoring.
The representativeness heuristic induces people confronted with a random sequence
of observations to believe that the essential characteristics of the data generation
process will be represented even in short sequences, so that they tend to see some
structure in random samples (Tversky and Kahneman, 1974). Conservatism indi-
cates the tendency of people facing some piece of evidence to update subjective
probabilities in the correct direction, but in an insufficient amount with respect
to what the Bayes theorem would prescribe (Edwards, 1982). Finally, adjustment
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and anchoring refer to the observation that people tend to make sequential eval-
uations starting from an initial (anchoring) point and then adjusting. Thus, the
results tend to be biased towards the initial values (Tversky and Kahneman, 1974).

In our model, we assume that agents try to learn the true process using two
models. Those models are Markov chains described by the transition matrices

Mh :

st+1 = 0 st+1 = 1( )
st = 0 πh 1− πh

st = 1 1− πh πh

, h = 1, 2 . (3)

Let Mh(st+1 | st) be the probability of observing state st+1 after state st according
to model h = 1, 2, then, Mh(st+1 = st | st) = πh and Mh(st+1 ̸= st | st) = 1 − πh.
We set π1 < 0.5 < π2, so that M1 assigns a higher probability to switch than
to persist, while M2 assigns a higher probability to remain in a state instead of
switching. Given a partial history σt, the probability attached by each agent to
the realization of st+1 is a convex weighting of the probabilities assigned by two
models,

p(st+1|σt) =
2∑

h=1

wh(σt)Mh(st+1|st) (4)

with wh(σt) ∈ [0, 1],
∑2

h=1 wh(σt) = 1, and p(σt) =
∏t

τ=1 p(sτ |στ−1). The weights
are updated according to the following prescription,

w1(σt+1) = µλ+ (1− µ)
M1(st+1|st)w1(σt)

p(st+1|σt)
, (5)

with w2(σt+1) = 1 − w1(σt+1) and λ, µ ∈ [0, 1]. The representativeness heuris-

tic emerges when µ ∈ [0, 1). In this case, w1(σt+1) > w1(σt) if st+1 ̸= st and
w1(σt+1) < w1(σt) if st+1 = st. Such a reinforcing mechanism, combined with
the two Markov models, makes agents believe that the true process has positive
autocorrelation if random sequences of equal states occur and that it has negative
autocorrelation as random sequences of alternating states occur. The parameter
λ describes anchoring and adjusting. Indicates the anchoring probability attached
to M1 while 1− λ is that attached to M2. The parameter µ expresses the degree
of conservatism. If µ = 1, the agents are maximally conservative without any rep-
resentativeness heuristic. In this case, their beliefs are completely characterized
by anchor probabilities. If µ = 0, the agents are not affected by conservatism and
behave as Bayesian. The intermediate values of µ indicate a belief adjustment
process around the anchor with a certain degree of conservatism.
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5 The emergence of pricing anomalies

Some sufficient or necessary conditions for the presence or absence of anomalies
can be derived using the results about reinforcing and progressive update rules in
Bottazzi and Giachini (2022). Reinforcing means that new evidence in favor of a
model increases the weight assigned to it, while progressive means that the effect
of a new realization is not reduced by previous evidence. Define the functions

f+/−(w;µ, λ) = µλ+ (1− µ)
(1+ − π1)w

1+ − π1w − π2(1− w)
,

where 1+ is equal to 1 for f+ and 0 for f−. Note that if st+1 ̸= st, w1(σt+1) =
f+(w1(σt);µ, λ), while if st+1 = st, w1(σt+1) = f−(w1(σt);µ, λ).

Proposition 5.1. For any λ ∈ [0, 1] and µ ∈ (0, 1), there exist wµ,λ and wµ,λ,

unique in (0, 1), that solve w = f−(w;µ, λ) and w = f+(w;µ, λ), respectively. It is
wµ,λ < wµ,λ and if w1(σ0) ∈ [wµ,λ, wµ,λ], then w1(σt) ∈ [wµ,λ, wµ,λ], ∀σt.

Moreover, the update rule in (5) is progressive, that is, f− and f+ are contin-

uous and nondecreasing in [wµ,λ, wµ,λ], and reinforcing, that is, ∀w ∈ [wµ,λ, wµ,λ],
f−(w) < w and f+(w) > w.

Proof. See Appendix A.

Figure 1 shows two examples of f+(w;µ, λ) and f−(w;µ, λ) with the relative
wµ,λ and wµ,λ. On the left, all the cognitive biases are active. On the right, the
agents are Bayesians, w0,λ = 0, w0,λ = 1, and only the representative heuristics is
active.

Proposition 5.2 (Conditional momentum and reversal). For any λ ∈ [0, 1] and
µ ∈ (0, 1), conditional momentum occurs if

µλ+ wµ,λ

(1− π1)(1− µ+ wµ,λ) + (1− π2)(1− wµ,λ)

1− π1wµ,λ − π2(1− wµ,λ)
>

2π2 − 1

π2 − π1

. (6)

Conditional momentum does not occur if

µλ+ wµ,λ
π1(1− µ+ wµ,λ) + π2(1− wµ,λ)

π1wµ,λ + π2(1− wµ,λ)
<

2π2 − 1

π2 − π1

. (7)

Conditional reversal occurs if and only if

2wµ,λ <
2π2 − 1

π2 − π1

. (8)

Proof. See Appendix B.
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Figure 1: Examples of f+(w;µ, λ) and f−(w;µ, λ). Left: µ = 0.2, λ = 0.5, π1 = 0.2,
π2 = 0.6. Right: µ = 0, π1 = 0.1, π2 = 0.8.

Proposition 5.3 (Cross sectional momentum and reversal). For any λ ∈ [0, 1]
and µ ∈ [0, 1), cross sectional momentum with 1 formation period occurs 1 period

after formation if (6) is satisfied and one of the following conditions also holds:

π = 1/2, or π < 1/2 and wµ,λ ≥ (π + π2 − 1)/(π2 − π1), or π > 1/2 and

wµ,λ ≤ (π + π2 − 1)/(π2 − π1).
Cross sectional reversal with 1 formation period occurs 1 period after formation

if (7) is satsified and one of following conditions also holds: π = 1/2, or π < 1/2
and wµ,λ ≤ (π + π2 − 1)/(π2 − π1), or π > 1/2 and wµ,λ ≥ (π + π2 − 1)/(π2 − π1).

Proof. See Appendix C.

The conditions given above are not exhaustive on how cognitive biases lead to
the emergence of pricing anomalies according to different definitions. In fact, they
are completely silent on time series anomalies and more general cross-sectional
effects. There are, however, two special cases that we can analyze in more depth.

5.1 The Bayesian and fully conservative cases

When µ = 0, the agents are not affected by conservatism and adjust their beliefs
in a Bayesian way. In this case, only the representativeness heuristic is present.
Define the average entropy of the two Markov models with respect to the true i.i.d.
process

DP (Mh) = π2 log
π

πh

+ π(1− π) log
π(1− π)

(1− πh)2
+ (1− π)2 log

1− π

πh

, h = 1, 2.
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A Bayesian learner converges to the Markov model with the lowest relative entropy
(see Antico et al., 2023, for a similar model). If DP (M1) < DP (M2), then P -
almost surely limt→∞ w1(σt) = 1, while if DP (M1) > DP (M2), then P -almost
surely limt→∞ w1(σt) = 0.

In contrast, when µ = 1, the agents show extreme conservatism, no representa-
tiveness heuristic, and no adjustment around the anchor. It is w(σt) = λ, ∀σt, and
the subjective measure is a fixed convex combination of the two Markvov models.

In both previous cases, the subjective measure asymptotically converges to-
wards a Markov process in which Prob {st = st−1} = π1w̃ + π2(1 − w̃) = π̃, with,
w̃ = 0, 1, λ depending on the above conditions. In general,

Cov [r(σt+2), r(σt+1)|σt] = −π(1− π) E [r(σt+1)|σt]F1(σt)

βp(1|σt, 1)p(1|σt, 0)
.

If p is Markov, on almost all paths, Fj(σt) = 2π̃−1, ∀j, so that the conditional and
time-series definitions of momentum coincide, and Cov[r(σt+j), r(σt)] = 0, ∀j > 1.
These observations directly imply the following.

Proposition 5.4 (Conditional and time-series anomalies). Conditional momen-

tum and time-series momentum occur, while conditional reversal and time-series

reversal do not occur, if

2w̃ >
2π2 − 1

π2 − π1

.

Conditional reversal occurs, while time-series reversal, conditional momentum,

and time-series momentum do not occur, if

2w̃ <
2π2 − 1

π2 − π1

.

With respect to cross-sectional anomalies, the following result can be proved.

Proposition 5.5 (Cross-sectional anomalies). There exists a number φ ∈ [0.5, 1)
that depends on the true probability π such that cross-sectional momentum with the

formation period of 1 occurs 1 period after formation if w̃ > (π2 − φ)/(π2 − π1),
while cross-sectional reversal with the formation period of 1 occurs 1 period after

formation if w̃ < (π2 − φ)/(π2 − π1).

Proof. See Appendix D.

In conclusion, representativeness heuristic or full conservatism alone is enough
to observe a wide range of pricing anomalies. However, it is generally not possible
to relate one of these anomalies to a specific bias.
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6 Numerical exploration

We present a series of numerical exercises that explore the occurrence of pricing
anomalies for generic values of µ ∈ (0, 1) and λ ∈ [0, 1]. Starting with conditional
and time-series anomalies, we consider a sufficiently large time horizon T , choose
a s0, and draw M sequences of realizations σm,T = (s0, sm,1, sm,2, . . . , sm,T ) with
m = 1, 2, . . . ,M . Then, we average over the replica and compute

F̂1 =
1

M

(
M∑

m=1

p(1|σm,T , 1)− p(1|σm,T , 0)

)

and

ρ̂(j) =

(
M∑

m=1

(r(σm,T )− rT ) (r(σm,T−j)− rT−j)

)

√
M∑

m=1

(r(σm,T )− rT )
2

√
M∑

m=1

(r(σm,T−j)− rT−j)
2

,

where rt = M−1
∑M

m=1 r(σm,t). Using correlations instead of covariances is statis-
tically convenient, as we can use the approximation to the Student’s t distribution
in the null case to evaluate significance. T = 100 is sufficient to obtain reliable
results that do not change with longer simulations. We set M = 100000 so that
the error bands at the ∼ 97.5% confidence level are negligible given the size of the
picture.

A significantly negative value of F̂1 is evidence of conditional momentum, while
a significantly positive value of ρ̂(1) is evidence of time-series momentum. Figure 2
shows the combinations of (π1, π2) for which momentum is observed. The solid
black line delimits the area where the sufficient condition for the conditional mo-
mentum in (6) is satisfied. A widespread concordance of the two definitions is
apparent, even if there exist regions in which they provide opposite results. The
two definitions seem to strongly agree when conservatism is high, whereas dis-
agreement is observed in some regions of the parameter space when conservatism
is low. Note that with high conservatism the theoretically sufficient condition for
conditional momentum appears (almost) necessary. This is due to the similarity
of the subjective measure to a Markov process. The anchoring parameter λ de-
cides the extent of the region where the effects are observed. When λ is large and
anchoring favors Model 1, conditional and time series momentum occur in a wide
region of the (π1, π2) plane. When, instead, λ is small and anchoring favors Model
2, the region where the effects are observed shrinks significantly. This is expected
as momentum is mainly driven by Model 1.

A similar investigation of the occurrence of reversal is reported in Figure 3. For
conditional reversal, we simply use the theoretical condition derived in Proposition
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Figure 2: Occurrence of conditional momentum (cond.), time-series momentum
(t.-s.), and the theoretical sufficient condition for conditional momentum (t.s.c.)
for different combinations of (π1, π2), π = 0.5, and representative values of µ
and λ. In the upper panels, conservatism is low (µ = 0.2), in the lower panels,
conservatism is high (µ = 0.8). In the left panels, the anchoring favors Model 1
(λ = 0.8), in the center panels the anchoring is symmetric (λ = 0.5), and in the
right panels the anchoring favors Model 2 (λ = 0.2).

5.3. For time-series reversal, we check whether for at least one lag j ∈ {2, 3, . . . , 15}
it is ρ̂(j) significantly negative with confidence level 97.5%. Iime-series reversal is
observed for almost all (π1, π2) except for a small region close to (0.5, 0.5). There,
the agents converge to having correct expectations and the autocorrelations tend
to zero. Conservatism and anchoring appear to have a limited effect on time-series
reversal. In contrast, conditional reversal is strongly influenced by behavioral
parameters. It is present for almost any combination of π1 and π2 if conservatism
is low and anchoring favors Model 2. As conservatism rises or anchoring starts
favoring Model 1, the region in which it occurs shrinks. This is expected, as the
conditional reversal is driven primarily by Model 2. Thus, as anchoring favors it
or the learning rule can converge to it (as in the Bayesian limit), such an anomaly
becomes increasingly widespread. The conditional and time-series definitions of
reversal tend to agree when both π1 and π2 are close to their upper limits, while
they tend to disagree when the two parameters are close to their lower limits.

Figure 4 shows the regions where cross-sectional anomalies occur one period
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Figure 3: Occurrence of conditional reversal (cond.) and time-series reversal (t.-s.)
for different combinations of (π1, π2), π = 0.5, and selected values of µ and λ. In
the upper panels, conservatism is low (µ = 0.2), in the lower panels, conservatism
is high (µ = 0.8). In the left panels, the anchoring favors Model 1 (λ = 0.8), in
the center panels the anchoring is symmetric (λ = 0.5), and in the right panels
the anchoring favors Model 2 (λ = 0.2).

after formation for portoflios with one period formation, considering the same
parameter values used in the previous exercises. Cross-sectional momentum is
observed when π2 is close to 0.5, while cross-sectional reversal tends to be observed
when π1 is close to 0.5. As agents become more conservative, the conditions appear
to be tighter and largely overlap with the conditions for conditional momentum and
conditional reversal. However, we know that when π = 0.5, the sufficient condition
for cross-sectional momentum reduces to the sufficient condition for conditional
momentum. Therefore, in Figure 5, we repeat the exercise considering π = 0.25.
In this case, the regions where sufficient conditions are satisfied are reduced by
the stricter requirements of Proposition 5.3. Cross-sectional reversal is the most
affected and now tends to occur when (π1, ‘π2) ∼ (0.5, 1). It disappears when
conservatism is high and anchoring favors Model 1.

Next, we investigate the performance of the Winner and Loser portfolio at
different horizons and with different formation periods. Following Bottazzi et al.
(2019), we use a computational adaptation of the estimation strategy commonly
used in empirical contributions. That is, we draw a time series of T steps and
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Figure 4: Occurrence of cross-sectional momentum (c.s. mom.) and reversal (c.s.
rev.) for portfolios with formation period of one, one period after formation, for
different combinations of (π1, π2), π = 0.5, and selected values of µ and λ. In the
upper panels, conservatism is low (µ = 0.2), in the lower panels, conservatism is
high (µ = 0.8). In the left panels, anchoring favors Model 1 (λ = 0.8), in the
center panels, anchoring is symmetric (λ = 0.5), and in the right panels anchoring
favors Model 2 (λ = 0.2).

divide it into L non-overlapping time windows of equal length l.2 Winner and Loser
portfolios are created at the end of each time window as described in Section 3 and
their cumulative return is computed for each time step h = 1, 2 . . . , H following
portfolio formation. Then, for each performance period h, cumulative returns are
averaged over the L different performance windows after each portfolio formation,
to obtain an estimate of the expected cumulative return h periods after formation.3

Figure 6 shows the performance of the two portfolios for selected parameters values
and different durations of the formation period. The occurrence of cross-sectional
momentum is a rather recurrent feature. We find evidence of it for at least one
horizon in any case considered. This is consistent with what is observed in Figure 2.
The situation is the opposite for reversal. We have evidence of it only in the case
of low conservatism and a formation period of length 6, while Figure 3 shows that

2This is the approach followed by De Bondt and Thaler (1985, 1987). Jegadeesh and Titman
(1993, 2001) allow for overlapping windows in order to increase the sample size.

3Standard errors and confidence bands are computes as in De Bondt and Thaler (1985)
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Figure 5: Occurrence of cross-sectional momentum (c.s. mom.) and reversal (c.s.
rev.) for portfolios with formation period of one, one period after formation, for
different combinations of (π1, π2), π = 0.25, and selected values of µ and λ. In
the upper panels, conservatism is low (µ = 0.2), in the lower panels, conservatism
is high (µ = 0.8). In the left panels, the anchoring favors Model 1 (λ = 0.8), in
the center panels, the anchoring is symmetric (λ = 0.5), and in the right panels
anchoring favors Model 2 (λ = 0.2).

time-series reversal always occurs and conditional reversal occurs if conservatism is
low. Regarding the effect of the formation period, with l = 1 the Winner portfolio
shows the highest performance in the first period and then stabilizes around a
given level, for longer formation periods it tends to show an increasing behavior.

The predominance of the cross-sectional momentum in Figure 6 can be driven
by the anchoring that favors Model 1. Therefore, in Figure 7 we repeat the ex-
ercises, selecting a value for the anchoring parameter that favors Model 2. As
expected, now cross-sectional reversal emerges for any horizon considered if the
formation period has length 1. Notice that the lack of momentum and the presence
of a reversal effect are consistent with the indications provided by the conditional
and time-series definitions. However, as the formation period increases, the Win-
ner portfolio improves its performance and cross-sectional momentum is observed
at any horizon considered if l = 24. Thus, increasing the formation period one
passes from a situation in which there is perfect concordance among definitions to
a situation in which cross-sectional anomalies provide opposite indications than
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Figure 6: Winner and Loser portfolios’ average cumulative returns with H = 15,
L = 100000, π = 0.5, π1 = 0.2, π2 = 0.8, λ = 0.8, µ ∈ {0.2, 0.8}, and different
formation periods. In the upper panels l = 1, in the center panels l = 6, and in
the lower panels l = 24. In the left panels, conservatism is low (µ = 0.2), in the
right panels, conservatism is high (µ = 0.8). The confidence bands are 3 standard
errors away from estimates.

conditional and time-series ones.
A final point that we investigate is whether our model can produce cross-

sectional momentum for short horizons followed by cross-sectional reversal for
longer horizons, consistent with the empirical evidence of short-term momentum
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Figure 7: Winner and Loser portfolios’ average cumulative returns with H = 15,
L = 100000, π = 0.5, π1 = 0.2, π2 = 0.8, λ = 0.2, µ ∈ {0.2, 0.8}, and different
formation periods. In the upper panels l = 1, in the center panels l = 6, in the
lower panels l = 24. In the left panels, conservatism is low (µ = 0.2), in the right
panels conservatism is high (µ = 0.8). The confidence bands are 3 standard errors
away from estimates.

and long-term reversal reported in the literature. The answer is positive and Fig-
ure 8 shows an example of such an occurrence. However, according to Proposition
5.3, conditional reversal does not occur for these parameter values. At the same
time, conditional and time-series momentum and reversal are observed for combi-
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Figure 8: Winner and Loser portfolios’ average cumulative returns with H = 15,
L = 100000, l = 2, π = 0.5, π1 = 0.31, π2 = 0.51, λ = 0.4, and µ = 0.5. Confidence
bands are 3 standard errors away from estimates.

nations of parameter values for which cross-sectional anomalies are not observed
(e.g., the top-left panel of Figure 6). Thus, disagreement among the definitions
also emerges in terms of which combination of parameters shows momentum profits
that subsequently revert. We must note here that extensive numerical explorations
have not provided evidence of regions of the parameter space where all the anoma-
lies occur together.

7 Conclusions

Using a simple and streamlined general equilibrium model, we study the emer-
gence of momentum and reversal as a consequence of cognitive biases in learning.
Following the different approaches existing in the literature, three definitions of
the momentum and reversal pricing anomalies are considered: conditional, time-
series, and cross-sectional. To explore how the different definitions interact and
connect with specific behavioral characteristics, we consider a biased learning pro-
cess that accounts for representativeness heuristic, conservatism, and anchoring

and adjusting. The weight update rule is equivalent to that proposed in Antico
et al. (2023) and represents an adaptation of the rule in Barberis et al. (1998) to a
general equilibrium framework. This framework allows us to overcome the limits
imposed by the single-security partial equilibrium setting that characterizes most
of the theoretical literature on momentum and reversal and extend our analysis to
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the cross-sectional definitions often adopted in the empirical literature.
Our study shows that, despite the simplicity of the model, the three defini-

tions, even if related, can generically differ and provide opposite indications on
the occurrence of pricing anomalies. This suggests that they plausibly capture
different aspects of mispricing, and only their joint study allows for a more com-
plete picture of the behavioral causes of pricing anomalies and a better match of
empirical evidence. At the behavioral level, an important finding is that conser-
vatism and representative heuristics are not explicitly connected to the emergence
of one of the anomalies. Additionally, some pricing anomalies are more affected by
behavioral biases than others. For instance, while for other anomalies anchoring
plays a role in determining how widespread they are, time-series reversal appears
quite insensible to it. The analysis of cross-sectional effects shows that the length
of the formation period and the horizon at which the effects can be observed add
another layer of complexity and potential disagreement with the other definitions.
Overall, the model can reproduce the empirical evidence of momentum profits that
subsequently revert, even if the combinations of parameters change according to
the adopted definitions.

The proposed model is highly stylized and presents several limitations. For
instance, our numerical exploration has found no combination of the parameter
values such that the pattern of momentum profits that subsequently revert is
observed according to all definitions. Following Milian (2015), this is probably
related to the assumption of homogeneous agents. Hence, one can imagine that
adding agents with different belief formation rules to our model may let it match
the empirical evidence more closely. At the same time, considering heterogeneous
agents makes pricing more complicated and generates nontrivial market selection
dynamics. This motivates future contributions aimed at carefully investigating the
interaction between heterogeneous agents, pricing anomalies, and selection.

A Proof of Proposition 5.1

By direct inspection, it is immediately verified that in [0, 1], f+ and f− are con-
tinuous and increasing, f+ is strictly concave and f− is strictly convex, f+(0) =
f−(0) = µλ and f+(1) = f−(1) = 1 − µ(1 − λ). These observations are sufficient
to prove the statements of the theorem. The solutions of the equations read

wµ,λ =
1

2
+

λπ2 + (1− λ)π1

2(π2 − π1)
µ−

√(
1

2
+

λπ2 + (1− λ)π1

2(π2 − π1)
µ

)2

− µλπ2

π2 − π1

,
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and

wµ,λ =
1

2
−1− λπ2 − (1− λ)π1

2(π2 − π1)
µ+

√(
1

2
− 1− λπ2 − (1− λ)π1

2(π2 − π1)
µ

)2

+
µλ(1− π2)

π2 − π1

.

B Proof of proposition 5.2

Given that the learning rule, for the parameters considered, is progressive and
reinforcing (see Theorem 5.1), the first statement is derived from Proposition 4.1
and the second from Proposition 4.2 in Bottazzi and Giachini (2022).

C Proof of proposition 5.3

If (6) is respected, then F1(σt) < 0. Thus, from (2), E[W1,1(σt+2)|σt] > 0 if

(1− 2π)(p(1|σt, 0)− π) = (1− 2π) (w(σt, 0)(π2 − π1) + 1− π2 − π) ≥ 0.

Recalling that wµ,λ ≤ w(σt, 0) ≤ wµ,λ, the first set of sufficient conditions is simply
derived. For the second set, note that if (7) is respected, then F1(σt) > 0. Thus,
from (2), E[W1,1(σt+2)|σt] < 0 if the previous inequality is satisfied in the opposite
direction.

D Proof of Proposition 5.5

Because the subjective measure is Markov, from (2), it is

lim
t→∞

E[W1,1(σt)] =
π2

β

(
1

π̃
− 1

1− π̃

)
+

(1− 2π)(1− π̃ − π)

β(1− π̃)
=

π̃2(2π − 1) + π̃(1− 3π) + π2

βπ̃(1− π̃)
.

The sign of the above expression is decided by the sign of the second-order polyno-
mial in the numerator. This polynomial is equal to π2 when π̃ = 0, to 1/4−π(1−π)
when π̃ = 0.5 and to −π(1 − π) when π̃ = 1. Thus, there exists a single number
φ ∈ [0.5, 1) such that if π̃ < φ the expectation is positive, while if π̃ > φ it is neg-
ative. The statement is recovered from the definition of π̃. If π = 1/2, φ = 1/2,
while if π ̸= 1/2,

φ =
3π − 1−

√
1− 6π + 13π2 − 8π3

4π − 2
.

21



Acknowledgements

The authors would like to thank Remco Zwinkels and the participants to the 4th
YETI meeting for their comments.

Declaration of interest: none.

References

Antico, A., G. Bottazzi, and D. Giachini (2023). On the evolutionary stability of
the sentiment investor. In D. Bourghelle, P. Grandin, F. Jawadi, and P. Rozin
(Eds.), Behavioral Finance and Asset Prices: The Influence of Investor’s Emo-

tions, pp. 155–173. Cham: Springer International Publishing.

Asness, C. S., T. J. Moskowitz, and L. H. Pedersen (2013). Value and momentum
everywhere. The Journal of Finance 68 (3), 929–985.

Barberis, N., A. Shleifer, and R. Vishny (1998). A model of investor sentiment.
Journal of financial economics 49 (3), 307–343.

Bernard, V. L. and J. K. Thomas (1989). Post-earnings-announcement drift: de-
layed price response or risk premium? Journal of Accounting research 27, 1–36.

Bernard, V. L. and J. K. Thomas (1990). Evidence that stock prices do not
fully reflect the implications of current earnings for future earnings. Journal of
Accounting and Economics 13 (4), 305–340.

Bottazzi, G., P. Dindo, and D. Giachini (2018). Long-run heterogeneity in an
exchange economy with fixed-mix traders. Economic Theory 66 (2), 407–447.

Bottazzi, G., P. Dindo, and D. Giachini (2019). Momentum and reversal in finan-
cial markets with persistent heterogeneity. Annals of Finance 15 (4), 455–487.

Bottazzi, G. and D. Giachini (2022). A general equilibrium model of investor
sentiment. Economics Letters 218.

Bottazzi, G. and D. Giachini (2024). Corrigendum to “a general equilibrium model
of investor sentiment” [economics letters 218 (2022)]. Economics Letters .

Bottazzi, G., D. Giachini, and M. Ottaviani (2023). Market selection and learning
under model misspecification. Journal of Economic Dynamics and Control 156,
104739.

22



Cespa, G. and X. Vives (2012). Dynamic trading and asset prices: Keynes vs.
hayek. The Review of Economic Studies 79 (2), 539–580.

Cujean, J. and M. Hasler (2017). Why does return predictability concentrate in
bad times? The Journal of Finance 72 (6), 2717–2758.

Cutler, D. M., J. M. Poterba, and L. H. Summers (1991). Speculative dynamics.
The Review of Economic Studies 58 (3), 529–546.

Daniel, K., D. Hirshleifer, and A. Subrahmanyam (1998). Investor psychology
and security market under-and overreactions. the Journal of Finance 53 (6),
1839–1885.

De Bondt, W. F. and R. Thaler (1985). Does the stock market overreact? The

Journal of finance 40 (3), 793–805.

De Bondt, W. F. and R. Thaler (1987). Further evidence on investor overreaction
and stock market seasonality. The Journal of Finance 42 (3), 557–581.

Edwards, W. (1982). Conservatism in human information processing. In D. Kahne-
man, P. Slovic, and A. Tversky (Eds.), Judgment under Uncertainty: Heuristics

and Biases, pp. 359–369. Cambridge University Press.

Evstigneev, I., T. Hens, and K. Schenk-Hoppé (2008). Globally evolutionary stable
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finance. In The handbook of post crisis financial modeling, pp. 214–234. Springer.

Fink, J. (2021). A review of the post-earnings-announcement drift. Journal of

Behavioral and Experimental Finance 29, 100446.

Foster, G., C. Olsen, and T. Shevlin (1984). Earnings releases, anomalies, and the
behavior of security returns. Accounting Review 59 (4), 574–603.

Hong, H. and J. C. Stein (1999). A unified theory of underreaction, momentum
trading, and overreaction in asset markets. The Journal of Finance 54 (6), 2143–
2184.

Jegadeesh, N. and S. Titman (1993). Returns to buying winners and selling losers:
Implications for stock market efficiency. The Journal of Finance 48 (1), 65–91.

Jegadeesh, N. and S. Titman (2001). Profitability of momentum strategies: An
evaluation of alternative explanations. The Journal of Finance 56 (2), 699–720.

23



Lewellen, J. (2002). Momentum and autocorrelation in stock returns. The Review

of Financial Studies 15 (2), 533–564.

Lo, A. W. and A. C. MacKinlay (1990). When are contrarian profits due to stock
market overreaction? The Review of Financial Studies 3 (2), 175–205.

Lucas, R. E. (1978). Asset prices in an exchange economy. Econometrica 46 (6),
1429–1445.

Luo, J., A. Subrahmanyam, and S. Titman (2021). Momentum and reversals
when overconfident investors underestimate their competition. The Review of

Financial Studies 34 (1), 351–393.

Milian, J. A. (2015). Unsophisticated arbitrageurs and market efficiency: overre-
acting to a history of underreaction? Journal of Accounting Research 53 (1),
175–220.

Moskowitz, T. J. and M. Grinblatt (1999). Do industries explain momentum? The

Journal of Finance 54 (4), 1249–1290.

Moskowitz, T. J., Y. H. Ooi, and L. H. Pedersen (2012). Time series momentum.
Journal of financial economics 104 (2), 228–250.

Ottaviani, M. and P. N. Sørensen (2015). Price reaction to information with het-
erogeneous beliefs and wealth effects: Underreaction, momentum, and reversal.
American Economic Review 105 (1), 1–34.

Poterba, J. M. and L. H. Summers (1988). Mean reversion in stock prices: Evidence
and implications. Journal of financial economics 22 (1), 27–59.

Rouwenhorst, K. G. (1998). International momentum strategies. The Journal of

Finance 53 (1), 267–284.

Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: Heuristics
and biases. Science 185, 1124–1131.

24


